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Abstract. This paper aims to offer a glimpse into the intersection of math-

ematics between preorders, category theory, and finite topological spaces.
In particular, we will showcase interesting interactions between Galois con-

nections, closed symmetric monoidal preorders, homotopy equivalence, and

higher-dimensional topologies.
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1. Introduction

This paper is in large part motivated by one particular problem. A problem
which one could characterize as being multi-dimensional both literally and figu-
ratively. Through the study of finite topological spaces, many will learn of the
one-to-one correspondence between the Alexandroff topologies and the preorders
on any given set. Thus, if we were to consider all of the possible Alexandroff topolo-
gies on a given set and assign an ordering to this set of topologies, we would be able
to obtain a new topology; that is, a topology with topologies as its points. It is this
particular topology that this paper intends to study and provide preliminary results
for, with the hope that further study surrounding “higher-dimensional” topologies
will be conducted.

In Section 2, we will study preorders and introduce the notion of a Galois connec-
tion, a process which we may describe as a relaxed isomorphism between preorders.

In Section 3, we will briefly glimpse into higher-dimensions by constructing a
preorder of preorders. In particular, we will observe a Galois connection between
the preorderings and relations on any set.

In Section 4, we will familiarize ourselves with a special type of preorder, one
which possesses a symmetric monoidal structure. From this, we will introduce the
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concept of enrichment, a process one may describe as being able to cross higher-
dimensions. We will also observe an interesting interaction between Galois connec-
tions and symmetric monoidal preorders which enrich in a closed manner.

In Section 5, we will introduce finite topological spaces and finally present our
motivating problem; that is, the topology of topologies. We will then observe a
profound interaction between Galois connections and homotopy theory and discuss
its subsequent applications.

2. Preorders

For a moment, let us put mathematical abstraction to the side and shift our
focus to something more physical and tangible. I invite you to recall any decisions
which you have made recently. This could involve choosing to read this paper, going
to the bathroom, or something less trivial such as selecting between similar food
products at a grocery store. Having seen the title of this section, it may not come
as a surprise when I claim that preorders are at play throughout these decisions.
For instance, suppose that we are at a grocery store trying to choose one peanut
butter jar out of a dozen to purchase. We may look at numerous factors when
deciding this such as brand, taste, or cost. Regardless of our criteria, we will end
up assigning value to each of the jars and ordering them as such which allows us to
pinpoint the jar with the greatest value. Hence, we can see that an act as simple
as choosing between food products possesses an underlying preorder structure.

Now that you are filled to the brim with enthusiasm towards the study of pre-
orders, we can bring back our mathematical abstraction and focus back into the
contents of this paper. In this section, we will explore various preorder structures,
operators on them, and mappings between them. This will enable us to introduce
a special case of mappings between preorders called a Galois connection which will
eventually allow us to bridge our study of preorders to category theory and topology.

Definition 2.1. A preorder relation on a set X is a binary relation on X, here
denoted with infix notation ≤, such that

(a) (reflexivity) x ≤ x for all x ∈ X, and
(b) (transitivity) if x ≤ y and y ≤ z, then x ≤ z for all x, y, z ∈ X.

If x ≤ y and y ≤ x, we write x ∼= y and say x and y are equivalent. We call a pair
(X,≤) consisting of a set equipped with a preorder relation a preorder.

Definition 2.2. A preorder is a partial order if we additionally have that

(c) (antisymmetry) x ∼= y implies x = y.

We call a pair (X,≤) consisting of a set equipped with a partial order a poset.

Example 2.3. Consider the set X = {{a, b, c}, {a, b}, {b, c}, {b}, {c}}. An example
of a partial order is given by ordering this set by subset inclusion; that is, A ≤ B
if and only if A ⊆ B. A visual representation of this partial order is given by the
following diagram in which A ⊆ B if there is a line from A which goes up to B.
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{a, b, c}

{a, b} {b, c}

{b} {c}

We will see shortly that this diagram is actually a special type of graph called a
Hasse diagram.

Example 2.4. One may naturally wonder if there exists a preorder which is not
a partial order. For this, we can consider a rather practical example. Imagine we
have a set of people X = {Andrew,Bruce, Charlie,Daniel}. Given two people
A,B ∈ X, we say that A ≤ B if B is taller than A. One can check that this
ordering meets the reflexive and transitive requirements. Let us now suppose that
Andrew and Bruce have the same height. It follows that Andrew ≤ Bruce and
Bruce ≤ Andrew. However, from this we cannot conclude that Andrew = Bruce.
After all, while Andrew and Bruce may possess the same height, that does not
imply that they are the same person. Hence, we have equipped this set with a
preordering which is not a partial order.

Definition 2.5. A Hasse diagram is a directed graph which gives a representation
of a preorder (P,≤). The elements of P are the vertices V , and the order ≤ is
given by v ≤ w if and only if there is a path v → w. For any vertex v, there is
always a path v → v, which satisfies reflexivity. The paths u → v and v → w can
be concatenated to a path u → w satisfies transitivity. In our depictions of Hasse
diagrams, we will only draw arrows between immediate elements; that is, for any
two vertices v, w ∈ V , we will draw the path between them if and only if v → w is
the only path between them. Furthermore, these paths will always have upwards
vertical direction.

Theorem 2.6. The above construction of the Hasse diagram gives a bijection from
partial orders to partial order diagrams. Furthermore, there is an isomorphism of
partial orders between two posets P and Q if and only if there is a graph isomorphism
between the associated diagrams HP and HQ.

Proof. For details on this theorem/proof see May [[2], Thm. 2.6.3.] □

Example 2.7. Consider the set X = {a, b, c} equipped with the following pre-
ordering (omitting reflexive and transitive laws):

b ≤ a.

This can be represented with the following Hasse diagram:

a

b c .

Having seen various examples of preorders with examination of their individual
structures, we now wish to study how we can get from one preorder to another; that
is, the mappings between preorders. We now define a special type of map which
preserves structure between preorders.
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Definition 2.8. A monotone map between preorders (A,≤A) and (B,≤B) is a
function f : A → B such that, for all elements x, y ∈ A, if x ≤A y then f(x) ≤B

f(y).

Remark 2.9. In other contexts, a monotone map may be referred to as an order-
preserving map. It is also worth noting that in the special case of finite topological
spaces, monotone maps are equivalent to continuous maps. This scenario is some-
thing we will later encounter and formalize.

Example 2.10. Recall our preorder from (2.4). Let Y be a set containing the
biological parents of those contained in X. We define an ordering ≤Y on Y anal-
ogously to the ordering on X; that is, an ordering by height. We now define a
function f : X → Y which maps a child to their father. For the purposes of this
example, let us assume that all children are 3

4 the height of their father. It follows
then that given A,B ∈ X where A ≤X B we have that f(A) ≤Y f(B). As such, f
is a monotone function.

We will now define a pair of operators on preorders. These operators, called
meets and joins, allow us formulate a particular structure on preorders as we will
see shortly.

Definition 2.11. Let (P,≤) be a preorder, and let A ⊂ P be a subset. We say
that an element p ∈ P is a meet of A if

(a) for all a ∈ A, we have p ≤ a, and
(b) for all q ∈ P such that q ≤ a for all a ∈ A, we have that q ≤ p.

We write p =
∧
A, p =

∧
a∈A a, or, if the dummy variable a is clear from context,

just p =
∧

A a. If A consists of just two elements, say A = {a, b}, we can write
∧
A

simply by a ∧ b.
Similarly, we say that p is a join of A if

(a) for all a ∈ A we have a ≤ p, and
(b) for all q ∈ P such that a ≤ q for all a ∈ A, we have that p ≤ q.

We write p =
∨
A or p =

∨
a∈A a, or when A = {a, b} we may simply write p = a∨b.

Remark 2.12. One can think ofmeets and joins as being equivalent to the infimum
and supremum of a set. That is, given A ⊂ X where X is a set equipped with a
preordering, we have the following:

∧
A ∼= inf A and

∨
A ∼= supA

where inf A, supA ∈ X. However, it is worth noting that unlike the infimum and
supremum, meets and joins are not necessarily unique as we will see shortly.

Example 2.13. Consider the following preorder (X,≤):
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a

b c d

e

f g

h

(i) Consider the preorder X in its entirety. We have that∧
X = h and

∨
X = a.

(ii) Suppose that we remove h from X. Does
∧

X still exist?
(iii) Consider the subset A = {b, c, e}. We have that∧

A = e and
∨

A = a.

(iv) Consider the subset A = {b, c}. Suppose that we remove e from X while
retaining the transitive relations stemming from it. We have that

∧
X =

{f, g}.
(v) Given any x, y, z ∈ X, can we prove that the following equality holds?

(x ∨ y) ∨ z = x ∨ (y ∨ z)

(vi) Given any x1, x2, y1, y2 ∈ X such that x1 ≤ y1 and x2 ≤ y2, can we prove
that the following inequality holds?

x1 ∨ x2 ≤ y1 ∨ y2

(vii) Can we generalize parts (v) and (vi) to any preorder?

Definition 2.14. A Galois connection between preorders P and Q is a pair of
monotone maps f : P → Q and g : Q → P such that for all p ∈ P and q ∈ Q

f(p) ≤ q if and only if p ≤ g(q).

We call f the left adjoint and g the right adjoint of the Galois connection.
One can think of a Galois connection as a pair of maps which preserve the

ordering of points in two different contexts simultaneously. From this, it might
seem that a Galois connection is akin to a relaxed isomorphism. In fact, we find
that all preorder isomorphisms are indeed Galois connections while not all Galois
connections are preorder isomorphisms.

Proposition 2.15. Suppose that f : P → Q and g : Q → P are monotone maps.
The following are equivalent

(a) f and g form a Galois connection where f is left adjoint to g,
(b) for every p ∈ P and q ∈ Q we have

p ≤ g(f(p)) and f(g(q)) ≤ q
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Proof. We will first show that statement (a) implies statement (b).

Let p ∈ P . By reflexivity, we have the following inequality:

p ≤ p.

Since f is a monotone map, it follows that

f(p) ≤ f(p).

Since f maps from P to Q, we have that f(p) ∈ Q. Hence, since f and g form a
Galois connection where f is left adjoint to g, it follows that

f(p) ≤ f(p) if and only if p ≤ g(f(p)).

Therefore, since f(p) ≤ f(p), we have our result

p ≤ g(f(p)).

as desired. An analogous proof follows to show that f(g(q)) ≤ q.

We will now show that statement (b) implies statement (a).

We want to show that f and g form a Galois connection where f is left adjoint
to g. That is,

f(p) ≤ q if and only if p ≤ g(q).

Suppose that f(p) ≤ q. Since g is a monotone map, it follows that g(f(p)) ≤ g(q).
From our supposition (b), we have that p ≤ g(f(p)) and so by transitivity:

p ≤ g(q).

An analogous proof follows to show that p ≤ g(q) implies f(p) ≤ q. □

From this result, we have acquired an equivalent definition of a Galois connection.
For readers who are already familiar with homotopy theory, one may realize that
this characterization of a Galois connection looks almost identical to that of a
homotopy equivalence. We will later see that this is indeed the case.

3. Level Shifting

Through the study of mathematics, one may be inclined to ponder higher dimen-
sional questions. In topology, this is exhibited through the notion of a homotopy
between homotopies or a topology generated by topologies, something which we
will discuss later. We will informally refer to this phenomenon as level shifting (as
coined by Fong and Spivak [[1], 1.4.5.]) and proceed to study a particular example
of level shifting pertaining to the preorder of preorders.

Definition 3.1. Given any set S, we define Rel(S) to be the set of all possible
binary relations on S. An element R ∈ Rel(S) is a subset R ⊂ S × S with binary
relations represented by ordered pairs (x, y) as its elements. We can assign an
ordering to Rel(S) by subset inclusion R ⊆ R′; that is, for every x, y ∈ S, if
R(x, y) then R′(x, y).

Example 3.2. Here we denote the ordered pair (a, b) as ab for sake of brevity. See
the Hasse diagram for Rel({a, b}):
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{aa, ab, ba, bb}

{aa, ab, ba}

{aa, ab} {aa, ba}

{aa}

{aa, ab, bb}

{aa, bb}

{aa, ba, bb} {ab, ba, bb}

{ab, ba} {ab, bb} {ba, bb}

{ab} {ba} {bb}

∅ .

Definition 3.3. Given any set S, we define Pos(S) to be the set of all possible
preorder relations on S with identical structure to that of Rel(S).

By equipping Pos(S) with an ordering by subset inclusion ⊆, one can check that
this forms a preorder structure on Pos(S). Hence, we have a preorder structure on
a set of preorders. As such, this is precisely a level shift.

Example 3.4. See the Hasse diagram for Pos({a, b}):

{aa, ab, bb, ba}

{aa, ab, bb} {aa, bb, ba}

{aa, bb}
.

Proposition 3.5. Notice that every preorder is in fact a relation and so there is
an inclusion map g : Pos(S) → Rel(S). Let f : Rel(S) → Pos(S) be given by
taking any relation R, writing in infix notation using ≤, and taking the reflexive
and transitive closure; that is, adding s ≤ s for every s ∈ S and adding s ≤ u
whenever s ≤ t and t ≤ u.

There is a Galois connection between Pos(S) and Rel(S) given by f as the left
adjoint and g as the right adjoint.

A proof will not be provided for this proposition. Instead, we will work through
an example with a two point set in belief that this exercise will be more informative
than the abstract proof. Readers are encouraged to generalize results from this
example and formulate their own proof.
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Example 3.6. Let S = {a, b}. The following diagram illustrates the mappings of
the left adjoint f which converts relations to preorderings. Relations are colored
black while preorderings are colored red.

{aa, ab, ba, bb}

{aa, ab, ba}

{aa, ab} {aa, ba}

{aa}

{aa, ab, bb}

{aa, bb}

{aa, ba, bb} {ab, ba, bb}

{ab, ba} {ab, bb} {ba, bb}

{ab} {ba} {bb}

∅

From seeing the mappings of the left adjoint f , one will notice that f is monotone.
We can conceptually explain this. Suppose we are given two relations R,R′ such
that R ≤ R′. Since R ≤ R′, one can say that all of the information contained within
R was also contained in R′. The process of taking the reflexive and transitive closure
on a relation can be described as building up from existing information i.e. forming
connection from existing ones. Therefore, arguing by contradiction, how can it be
the case that f(R) ̸≤ f(R′)? After all, this would imply that f(R) contained an
element not present in f(R′) despite the fact that R did not contain any more
information than R′ to begin with.

4. Symmetric Monoidal Preorders

In this section we will focus on a special type of preorder called a symmetric
monoidal preorder. With the unique structure of symmetric monoidal preorders,
we will be able to study the process of enrichment and observe Galois connec-
tions within a special subset of symmetric monoidal preorders, namely, ones which
interact with enrichment in a closed manner.

Definition 4.1. A symmetrical monoidal structure on a preorder (X,≤) consists
of two constituents:

(i) an element I ∈ X, called the monoidal unit, and
(ii) a function ⊗ : X ×X → X, called the monoidal product.

These constituents must satisfy the following properties, where we write⊗(x1, x2) =
x1 ⊗ x2:
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(a) (monotonicity) for all x1, x2, y1, y2 ∈ X, if x1 ≤ y1 and x2 ≤ y2, then
x1 ⊗ x2 ≤ y1 ⊗ y2,

(b) (unitality) for all x ∈ X, the equations I ⊗X = x and x⊗ I = x hold,
(c) (associativity) for all x, y, z ∈ X, the equation (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)

holds, and
(d) (symmetry) for all x, y ∈ X, the equation x⊗ y = y ⊗ x holds.

A preorder equipped with a symmetrical monoidal structure, (X,≤, I,⊗), is called
a symmetric monoidal preorder.

Example 4.2. Consider the natural numbers including 0: N ∪ {0} equipped with
its standard preordering ≤. We choose our monoidal product and unit to be +,
standard addition, and 0, respectively.

Example 4.3. Consider the booleans: B = {false, true} with the preordering
≤ such that false ≤ true. We choose our monoidal product to be ∧, the and

operator and our monoidal unit to be true. We will call this symmetric monoidal
preorder:

Bool := (B,≤, true,∧).
One can check that equipping the booleans with ∨ (OR) as the monoidal product

and false as the monoidal unit also satisfies the properties of a symmetric monoidal
structure.

Example 4.4. Let [0,∞] denote the set of non-negative real numbers together
with ∞. Consider the preorder ([0,∞],≥), with the usual notion of ≥, where of
course ∞ ≥ x for all x ∈ [0,∞].

There is a monoidal structure on this preorder, where the monoidal unit is 0 and
the monoidal product is +. In particular, x+∞ = ∞ for every x ∈ [0,∞]. Let us
call this monoidal preorder:

Cost := ([0,∞],≥, 0,+).

Example 4.5. Given any set X, recall the ordering on Pos(X) given by subset
inclusion (3.3). We have that (Pos(X),⊆, S,∩) is a symmetric monoidal preorder
where S is the maximal preorder on X; that is, for every x, y ∈ X we have that
S(x, y).

Now we will explore a symmetric monoidal structure using joins on Pos(X)
where X is a finite set. We will use this particular symmetric monoidal preorder in
later sections.

Proposition 4.6. Let X be any finite set. There exists a symmetric monoidal
structure on (Pos(X),⊆), given by I and ∨ where ∨ is the join operator and I =∧
Pos(X) is the unique meet of Pos(X).

Proof. We first wish to show that
∧

Pos(X) exists and is unique. Let us define a
particular preordering on X:

I := {(x, x) for all x ∈ X}.
Now let us check that I is a preordering on X. Simply from construction, reflexivity
is satisfied. Since I contains only reflexive binary relations, transitivity is also
satisfied. Hence, I is a preordering on X, and so I ∈ Pos(X).

We now claim that
∧
Pos(X) = I. Since every possible preordering on X must

satisfy reflexivity, it follows that for every R ∈ Pos(X), we have that I ⊆ R. This
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satisfies (a) from (2.12). Let Q ∈ Pos(X) such that Q ⊆ R for all R ∈ Pos(X).
Since I ∈ Pos(X), we have that Q ⊆ I. This satisfies (b) from (2.12). Therefore,
I =

∧
Pos(X).

We now claim that
∧
Pos(X) = I is unique. Suppose by contradiction that

there exists another meet of Pos(X), denoted J such that J ̸= I. Since J and I are
meets of Pos(X) and J, I ∈ Pos(X), we have that J ⊆ I and I ⊆ J . Therefore,
I = J which forms a contradiction.

We now wish to show that I and ∨ form a symmetric monoidal structure on
(Pos(X),⊆) where we take I as our monoidal unit and ∨, the join operator, to be
our monoidal product. We will show that each property is indeed satisfied (Note:
we use ≤ and ⊆ interchangeably here).

(a) Let P1, P2, Q1, Q2 ∈ Pos(X) such that P1 ≤ Q1 and P2 ≤ Q2. Let P =
P1 ∨ P2 and let Q = Q1 ∨Q2. It follows that P ≥ P1, P2 and Q ≥ Q1, Q2.
By transitivity, it also follows that Q ≥ P1, P2. Therefore, by (b) from
(2.12), we have that P ≤ Q as desired.

(b) Let R ∈ Pos(X). From (d), we have that ∨ is commutative. Since I ≤ R,
we have that I ∨R = R = R ∨ I as desired.

(c) Let P,R,Q ∈ Pos(X). Let A = (P ∨R)∨Q and let B = P ∨ (R∨Q). We
have that A ≥ P,R,Q and B ≥ P,R,Q. Therefore, by (b) from (2.12), it
follows that A ⊆ B and B ⊆ A; that is, A = B as desired.

(d) Let P,Q ∈ Pos(X). Since ∨ operates on sets and is well-defined, it follows
that P ∨Q =

∨
{P,Q} = Q ∨ P as desired.

Therefore, (Pos(X),⊆, I,∨) is a symmetric monoidal preorder. □

The importance of the following proposition will be realized later once we discuss
finite topological spaces.

Proposition 4.7. Suppose X = (X,≤) is a preorder and Xop = (X,≥) is its
opposite. If (X,≤, I,⊗) is a symmetric monoidal preorder then so is its opposite,
(X,≥, I,⊗).

From this next definition, the significance of symmetric monoidal preorders may
become apparent. We will now introduce a concept called enrichment in which we
are able to construct a new mathematical structure by using a symmetric monoidal
preorder as its base.

Definition 4.8. Let V = (V,≤, I,⊗) be a symmetrical monoidal preorder. A
V-category X consists of two constituents, satisfying two properties. To specify X,

(i) one specifies a set Ob(X), elements which are called objects;
(ii) for every two objects x, y, one specifies an element X(x, y) ∈ V , called the

hom-object.

The above constituents are required to satisfy two properties:

(a) for every object x ∈ Ob(X) we have I ≤ X(x, x), and
(b) for every three objects, x, y, z ∈ Ob(X), we have X(x, y)⊗X(y, z) ≤ X(x, z).

We call V the base of the enrichment for X or say that X is enriched in V.

Example 4.9 ([[1], Ex. 2.4.7.]). Consider the preorder (V,≤), given by the follow-
ing Hasse diagram:
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t

s

q r

p

Recall the symmetric monoidal preorderBool=(B,≤, true,∧). LetOb(X) = {p, q, r, s, t}
be all the elements contained in the preorder V . We define our hom-object as fol-
lows, X(x, y) = true if x ≤ y and false otherwise. With this construction, we can
easily check that this indeed is a Bool-category.

Our choices may seem very generalized and that is for good reason! In fact,
every preorder can be enriched in Bool which we will now prove.

Theorem 4.10 ([[1], Thm. 2.49.]). There is a one-to-one correspondence between
preorders and Bool-categories.

Proof. We first wish to show that from any preorder (P,≤), we can obtain a corre-
sponding Bool-category X. We choose the objects of X as follows,

Ob(X) = {x | x ∈ P}.

Next, we define the hom-object,

X(x, y) = true if x ≤ y and false otherwise.

Now we show that constituent (a) holds. Let x ∈ Ob(X). By reflexivity, x ≤ x
and so X(x, x) = true. Hence, I = true ≤ X(x, x) as desired. Now we show that
constituent (b) holds. Let x, y, z ∈ Ob(X). Suppose that X(x, y) ∧ X(y, z) = true.
We have that

x ≤ y and y ≤ z

and so by transitivity x ≤ z. Hence, X(x, z) = true which gives us,

X(x, y) ∧ X(y, z) ≤ X(x, z).

If we suppose instead that X(x, y) ∧ X(y, z) = false, then we have immediately
that, X(x, y) ∧ X(y, z) ≤ X(x, z) since false ≤ true.

Now, we want to show that from this Bool-category, we can obtain the same
preorder (P,≤). Let P = Ob(X). For every x, y ∈ P , we say that x ≤ y if and only
if X(x, y) = true. Now we check that this preordering is reflexive. Let x ∈ P . We
have that I = true ≤ X(x, x). Hence, X(x, x) = true and so x ≤ x. Now we check
that this preordering is transitive. Let x, y, z ∈ P . Suppose x ≤ y and y ≤ z. We
have that X(x, y) ∧ X(y, z) ≤ X(x, z). We also have that X(x, y),X(y, z) = true.
Thus, X(x, z) = true and so x ≤ z as desired. □

Remark 4.11. Recall from (4.3) that Bool itself is also a preorder. Hence, it is
possible to construct a Bool-category where the underlying set of objects is the
booleans B. It is in this sense that we can consider Bool to be self-enriched.

The significance of being self-enriched lies in the closure of the hom-object. That
is, given any two objects, x, y,∈ Ob(X), the hom-object X(x, y) ∈ Ob(X) is also
an object. We will formalize this property of self-enrichment shortly and discuss a
remarkable result which links a certain subset of self-enriched monoidal preorders
to Galois connections.
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Something most readers will be familiar with is the concept of a metric space.
In particular, we will see that a more generalized version of a metric space, called
a Lawvere metric space is actually equivalent to a Cost-category.

Definition 4.12. A metric space (X, d) consists of:

(i) a set X, elements of which are called points, and
(ii) a function d : X ×X → R≥0, where d(x, y) is called the distance between x

and y.

These constituents must satisfy four properties:

(a) for every x ∈ X, we have d(x, x) = 0,
(b) for every x, y ∈ X, d(x, y) = 0 if and only if x = y,
(c) for every x, y ∈ X, we have d(x, y) = d(y, x),
(d) for every x, y, z ∈ X, we have d(x, y) + d(y, z) ≥ d(x, z).

Definition 4.13. A Lawvere metric space is a metric space allowing for infinite
distances with omission of properties (b) and (c).

One can think of a Lawvere metric space as modelling cost values between loca-
tions with infinite distances representing impossible paths. Suppose we decide to
use transit time by car as our cost value. It is possible that the travel time from
the grocery store to our home is not equal to the travel time from our home to the
grocery store:

d(Store,Home) ̸= d(Home, Store).

After all, there may be one-way streets which increase the distance and subsequent
time taken to travel in one direction. Furthermore, if we consider the travel time
between Earth and Mars, we will find that this value is actually infinite (simply
because it is physically impossible to reach Mars from Earth solely on car):

d(Earth,Mars) = ∞.

Proposition 4.14 ([[1], Def. 2.5.3.]). A Lawvere metric space is equivalent to a
Cost-category.

Proof. A Cost-category X consists of:

(i) a set Ob(X),
(ii) for every x, y ∈ Ob(X) an element X(x, y) ∈ [0,∞].

Here, the set Ob(X) is the set of points, and X(x, y) ∈ [0,∞] is distance:

X := Ob(X) d(x, y) := X(x, y).

The properties of a category enriched in Cost are:

(a) 0 ≥ d(x, x) for all x ∈ X, and
(b) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

Since d(x, x) ∈ [0,∞], if 0 ≥ d(x, x) then d(x, x) = 0. Hence, this satisfies (a) of our
metric space definition. From (b), we immediately obtain the triangle inequality
found in (d) of the metric space properties. We have shown that a Cost-category
is a Lawvere metric space.

One can now show that from this Lawvere metric space we can obtain the original
Cost-category that we started with in a similar fashion. □

Recall our discussion in (4.11) about self-enrichment with the symmetric monoidal
preorder Bool. Let us first define what it means to be self-enriched.
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Definition 4.15. A symmetric monoidal preorder V = (V,≤, I,⊗) is self-enriched
if there exists a V-category X where Ob(X) = V .

Example 4.16. See (4.11) which discusses the self-enrichment of Bool.

We now wish to introduce a special type of symmetric monoidal preorder. We
will call these symmetric monoidal preorders, closed symmetric monoidal and we
will see that these preorders are indeed enriched in themselves.

Definition 4.17. A symmetric monoidal preorder V = (V,≤, I,⊗) is called closed
symmetric monoidal if, for every two elements v, w ∈ V , there is an element v ⊸
w ∈ V called the hom-element, with the property

(a⊗ v) ≤ w if and only if a ≤ (v ⊸ w)

for all a, v, w ∈ V .

Proposition 4.18. Bool is closed symmetric monoidal.

Proof. Recall our construction of a Bool-category from (4.9). Let X be a Bool-
category. We now define the hom-element to be:

v ⊸ w := X(v, w) for every v, w ∈ B.

We now wish to show that

a ∧ v ≤ w if and only if a ≤ X(v, w)

for every a, v, w ∈ B. Suppose that v = false. We have that a ∧ v = false ≤ w
and X(v, w) = true ≥ a. If we suppose instead that v = true, then we have that
a ∧ v = a ≤ w. We also have that X(v, w) = w ≥ a. Therefore, Bool is closed
symmetric monoidal. □

From the previous proposition, one may realize that our property for closure
looks identical to that of a Galois connection. In particular, we are given (−⊗ v) :
V → V and (v ⊸ −) : V → V as our adjoint functions. We will now prove that
this is indeed the case.

Recall (2.15) which showed an alternative definition of a Galois connection. We
will now show that this is also the case for a symmetric monoidal closure.

Lemma 4.19. Suppose V = (V,≤, I,⊗) is closed symmetric monoidal. Then we
have that

((v ⊸ w)⊗ v) ≤ w and w ≤ (v ⊸ (w ⊗ v))

for all v, w ∈ V .

Proof. Let a = v ⊸ w. By reflexivity we have that a ≤ a and so from our closed
symmetric monoidal property we are given that (a⊗ v) = ((v ⊸ w)⊗ v) ≤ w. The
proof for the other inequality follows analogously. □

Proposition 4.20. A symmetric monoidal preorder is closed symmetric monoidal
if and only if, given any v ∈ V , the maps (−⊗ v) : V → V and (v ⊸ −) : V → V
form a Galois connection with (− ⊗ v) and (v ⊸ −) as the left and right adjoints
respectively.
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Proof. From (4.17), it immediately follows that (−⊗v) and (v ⊸ −) form a Galois
connection as the left and right adjoints respectively. Hence, it suffices to show
that given a symmetric monoidal preorder which is closed, we have that (− ⊗ v)
and (v ⊸ −) are monotone.

Let V = (V,≤, I,⊗) be a symmetric monoidal preorder which is closed symmetric
monoidal. Fix some v ∈ V . Let a, b ∈ V such that a ≤ b. From (a) of (4.1), we are
given that a ⊗ v ≤ b ⊗ v. Hence, (− ⊗ v) is monotone. From (4.19), we have that
(v ⊸ a)⊗ v ≤ a ≤ b. Therefore, from the property of symmetric monoidal closure,
it follows that v ⊸ a ≤ v ⊸ b; that is, (v ⊸ −) is monotone. □

Proposition 4.21. A closed symmetric monoidal preorder is self-enriched.

Proof. Let V = (V,≤, I,⊗) be a closed symmetric monoidal preorder. We define
our objects to be elements of V and our hom-object to be our hom-element.

Ob(X) = V X(x, y) := x ⊸ y for all x, y ∈ V

Let x ∈ V . From our symmetric monoidal structure we have that I ⊗x ≤ x. Thus,
using our monoidal closure property, we are given I ≤ x ⊸ x = X(x, x). Hence,
this satisfies (a) from (4.8). Let u, v, w ∈ V . By (4.19) we have that u⊗(u ⊸ v) ≤ v
and v ⊗ (v ⊸ w) ≤ w. Hence, by (a) from (4.1) we have that

u⊗ (u ⊸ v)⊗ (v ⊸ w) ≤ w.

Applying the closed symmetric monoidal property, we obtain

(u ⊸ v)⊗ (v ⊸ w) ≤ u ⊸ w

satisfying (b) from (4.8). Therefore, V is self-enriched. □

5. Finite Topological Spaces

We will now offer a very brief glimpse into finite topological spaces. As this pa-
per’s primary focus is on symmetric monoidal preorders, we will almost exclusively
discuss results which relate to preorders. Readers are encouraged to explore much
deeper into the world of finite spaces on their own time (see May [2]) as much is
omitted here resulting in frankly lackluster “world-building”. As such, it may be
helpful for readers to have some background in basic point-set topology prior to
reading this section.

Definition 5.1. A topology τ on a set X is a set containing subsets of X, called
the open sets of X in the topology τ , with the following properties:

(i) The empty set ∅ and the set X are open.
(ii) Finite intersections of open sets are open.
(iii) Arbitrary unions of open sets are open.

We denote a set X with a topology τ as (X, τ). When the topology τ is obvious
from context, we say that X is a topological space.

Definition 5.2. An Alexandroff space X is a topological space such that arbitrary
intersections of open sets are open.

Proposition 5.3. A finite space is an Alexandroff space.

Proof. In a finite topological space, all arbitrary intersections are finite. □
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Although we will only refer to finite topological spaces through our examples, it
is important to note that most of our results do generalize to Alexandroff spaces.
As such, when possible, our results will be in the context of Alexandroff spaces.

Definition 5.4. A basis for a topology on a set X is a set B containing subsets of
X such that

(i) For every x ∈ X, there exists some B ∈ B such that x ∈ B.
(ii) If x ∈ B1 ∩ B2 where B1, B2 ∈ B, then there exists B ∈ B such that

x ∈ B ⊆ B1 ∩B2.

The topology τ generated by a basis B is the set containing subsets U ⊆ X such
that, for every point x ∈ X there exists some basis element B ∈ B such that
x ∈ B ⊆ U .

Remark 5.5. An equivalent way to generate a topology τ from a basis B is to
simply take τ := {

⋃
{Bλ | Bλ ∈ B}}; that is, our topology is given precisely by all

possible unions of basis elements and so every open set is a union of basis elements.

Definition 5.6. Let (X, τ) be a topological space. A neighborhood of a point x ∈ X
is an open set U ∈ τ containing x.

Definition 5.7. Let X be an Alexandroff space. For each point x ∈ X, we define
Ux to be the intersection of all neighborhoods of x. We define a relation ≤ on the
set X by x ≤ y if Ux ⊆ Uy. We say that x < y if Ux ⊂ Uy is a proper subset.

Proposition 5.8. Let X be an Alexandroff space. The set of all open sets Ux is a
basis B for X. If C is another basis, then B ⊆ C, therefore B is the unique minimal
basis for X.

Proof. For details on this proof see May [[2], Lem. 1.3.6.]. □

Proposition 5.9. Let X be an Alexandroff space. The ordering ≤ on X given by
(5.7) is a preordering.

Proof. Let x, y, z ∈ X. Immediately we have that Ux = Ux and so x ≤ x, satisfying
reflexivity. Suppose x ≤ y and y ≤ z. We have that Ux ⊆ Uy ⊆ Uz. Therefore,
Ux ⊆ Uz and so x ≤ z, satisfying transitivity. Hence, ≤ is a preordering. □

Lemma 5.10. Let X be an Alexandroff space. Let x, y ∈ X be two points.

x ∈ Uy if and only if Ux ⊆ Uy

Proof. Suppose x ∈ Uy. Since Uy is an open set, it follows that Uy is a neighborhood
of x. Therefore, Ux ⊆ Uy since Ux is the intersection of all neighborhoods of x.

Suppose now that Ux ⊆ Uy. We have that x ∈ Ux ⊆ Uy and so x ∈ Uy. □

Definition 5.11. Let X and Y be spaces. A map f : X → Y is continuous if the
pre-image f−1(U) is open in X for every open set U ∈ Y .

Proposition 5.12. A preorder (X,≤) determines a topology τ on X with basis
B = {Ux | x ∈ X}. We call this topology the order topology on X. The space (X, τ)
is an Alexandroff space.

Proof. We first wish to show that B is a basis for a topology. Let X be a topological
space with topology τ . Let x ∈ X. By definition, we have that x ∈ Ux. Hence, (i)
from (5.4) is satisfied. Let y, z ∈ X and suppose x ∈ Uy ∩ Uz. Since x ∈ Uy and
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x ∈ Uz, it follows from (5.10) that Ux ⊆ Uy and Ux ⊆ Uz. Hence, x ∈ Ux ⊆ Uy ∩Uz

and so (ii) from (5.4) is met. Therefore, B is a basis for a topology τ .
Now we wish to show that (X, τ) is an Alexandroff space; that is, arbitrary

intersections of open sets are open. Consider the set S =
⋂
{Uλ | Uλ ∈ τ}. Let

x ∈ S. It follows that x ∈ Uλ for every λ. Hence, Ux ⊆ Uλ for every λ and so
x ∈ Ux ⊆ S. Thus, S is open which gives us that (x, τ) is an Alexandroff space. □

Proposition 5.13. Given any set X, there is a one-to-one correspondence between
the Alexandroff topologies on X and the preorders on X.

Proof. For details on this proof see May [[2], Prop. 1.6.4]. □

The importance of this proposition cannot be stressed enough. With knowledge
of a one-to-one correspondence between finite topological spaces and finite pre-
orders, this allows us to view preorders in two distinct ways simultaneously. From
this, we will be able to connect our results from previous sections and apply them
in the context of topology.

Definition 5.14. A continuous bijection f : X → Y between topological spaces
is a homeomorphism if its inverse f−1 is also continuous. If there exists a home-
omorphism between two topological spaces X and Y , we say that X and Y are
homeomorphic, denoted as X ∼= Y .

We can consider a homeomorphism in topology to be equivalent to that of an
isomorphism in algebra. That is, if two spaces are homeomorphic, then they are
equivalent.

Corollary 5.15. We have a bijection between finite topologies and Hasse diagrams,
so that homeomorphism of spaces is equivalent to graph isomorphism of the two
diagrams.

Proof. This is clear from (2.6) and (5.13). □

Recall from (3.3) our preordering (Pos(S),⊆). It follows then that there is also
a level shift present with topological spaces where we can observe a topology of
topologies.

Definition 5.16. Given any set S, we define Top(S) to be the set of all possible
topologies on S.

Example 5.17. Let X = {a, b}, Y = {a, b, c, d}. See the Hasse diagram produced
by (Top(X),⊆):

{∅, {a}, {b}, {a, b}}

{∅, {a}, {a, b}} {∅, {b}, {a, b}}

{∅, {a, b}}
.

This Hasse diagram is isomorphic to the Hasse diagram produced by (Y,≤):
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d

b c

a .

Hence, the preordering ⊆ on Top(X) is isomorphic to the preordering ≤ on Y :

{aa, ab, ac, ad, bb, bd, cc, cd, dd}.

As such, this corresponds to the following topology on a four point set:

τ = {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}}.

From the preordering on all topologies of a two point set (Top(X),⊆), we were
able to generate a new topology τ ∈ Top(Y ) on a four point set. Therein lies the
level shift.

Remark 5.18. Upon comparing the Hasse diagram from (5.17) with the one from
(3.4) which was produced from (Pos(X),⊆), we may notice that the Hasse diagram
for Top(X) corresponds identically to the Hasse diagram of the opposite preorder-
ing on Pos(X). In particular, if we convert the topologies contained in the Hasse
diagram above to their corresponding preorders, then the Hasse diagram produced
corresponds to (Pos(X),⊆op).

{aa, bb}

{aa, ab, bb} {aa, ba, bb}

{aa, ab, bb, ba}

Recall (4.7). It follows then that regardless of our choice of subset inclusion with
Top or with Pos, our preordering will always possess a symmetric monoidal struc-
ture.

Corollary 5.19. Given any finite set X, it follows that (Top(X),⊆, I,∧) is a
symmetric monoidal preorder.

Proof. Since there is a one-to-one correspondence between topologies and preorders
on the set X, this follows directly from (4.6). □

Proposition 5.20. Given Alexandroff spaces X and Y , a map f : X → Y is
continuous if and only if f is monotone.

Proof. We will first show the forward direction. Suppose f : X → Y is continuous.
Let w ≤ x. We want to show that f(w) ≤ f(x); that is, Uf(w) ⊆ Uf(x). We

have that f−1(Uf(x)) = {y ∈ x | f(y) ∈ Uf (x)}. Since f(x) ∈ Uf(x), it follows

that x ∈ f−1(Uf(x)). Since f is continuous, we also have that f−1(Uf(x)) is open.

Therefore, f−1(Uf(x)) is a neighborhood of x and so Ux ⊆ f−1(Uf(x)). Since

w ∈ Uw ⊆ Ux, this gives us that w ∈ f−1(Uf(x)). Thus, f(w) ∈ Uf(x) and so
Uf(x) is a neighborhood of f(w). We obtain Uf(w) ⊆ Uf(x); that is, f(w) ≤ f(x) as
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desired. Therefore, f is monotone.
We will now show the reverse direction. Suppose f is monotone. Let V ⊆ Y be

open in Y . Let x ∈ X such that f(x) ∈ V . We have that f(x) ∈ Uf(x) ⊆ V and so

x ∈ f−1(V ). Let w ∈ Ux. It follows that Uw ⊆ Ux and so w ≤ x which gives us that
f(w) ≤ f(x) since f is monotone. Thus, we have that f(w) ∈ Uf(w) ⊆ Uf(x) ⊂ V ,

and so w ∈ f−1(V ). Hence, Ux ⊂ f−1(V ). Therefore, for every x ∈ f−1(V ), we
have that x ∈ Ux ⊂ f−1(V ) and so f−1(V ) is open inX; that is, f is continuous. □

Definition 5.21. Let I = [0, 1] denote the unit interval as a topological space with
its standard metric topology as a subspace of the real numbers R.

Definition 5.22. LetX and Y be topological spaces. A homotopy h is a continuous
map h : X × I → Y such that h(x, 0) = f(x) and h(x, 1) = g(x). We say that two
maps are homotopic, written f ≃ g, if there exists a homotopy between them.

Definition 5.23. Let X and Y be topological spaces. X and Y are homotopy
equivalent if there exist continuous maps f : X → Y and g : Y → X such that
f ◦ g ≃ idY and g ◦ f ≃ idX . We call f and g homotopy inverses and we call the
pair of maps (f, g) a homotopy equivalence.

Recall the equivalent definition of a Galois connection which we obtained in
(2.15). If we compare that to our definition of a homotopy equivalence we may
notice the following:

p ≤ g(f(p)) ≈ idX ≃ g ◦ f

f(g(q)) ≤ q ≈ f ◦ g ≃ idY

where the left/right side displays our conditions for a Galois connection/homotopy
equivalence. Therefore, the following proposition may not come as a surprise.

Proposition 5.24. If f and g form a Galois connection then f and g are homotopy
inverses of each other.

Proof. For details on this proof see Ayzenberg [[3], Cor. 3.1.]. □

Corollary 5.25. Given a symmetric monoidal preorder V = (V,≤, I,⊗) which
is closed symmetric monoidal, we have that (− ⊗ v) and (v ⊸ −) are homotopy
inverses of each other.

Proof. Recall from (4.20) that (− ⊗ v) and (v ⊸ −) form a Galois connection.
Thus, by (5.24) they are homotopy inverses. □

Corollary 5.26. Given any finite set S, Rel(S) and Pos(S) are homotopy equiv-
alent.

Proof. Recall from (3.5) that there exists a Galois connection between Rel(S) and
Pos(S). Thus, by (5.24) they are homotopy equivalent. □

Corollary 5.27. Let S be a finite set. Let (X, τT ) be the topological space corre-
sponding to (Top(S),⊆) and let (Y, τR) be the corresponding topological space to
(Rel(S),⊆). There is a homotopy equivalence between X and Y .

Proof. This follows immediately from (5.26). □
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